Doolittle直接分解算法

算法伪码:
A[n][n]—系数矩阵、b[n] —常数项矩阵
L[n][n]、U[n][n]、y[n]、x[n]—L、U矩阵与解向量

Step1L赋值:对角线元素赋值1,上三角元素赋值0;
Step2U赋值:下三角元素赋值为0;
Step3For k=1 To n Do Step4、Step5 /开始分解/
Step4
For j=k To n Do /求 U中第 k 行元素/
u[k][j] = a[k][j]
For r = 1 To k-1 Do
u[k][j] = u[k][j] – l[k][r]*u[r][j]
EndFor r
EndFor j
Step5
For i=k+1 To n Do /求 L 中第 k 列元素/
l[i][k] = a[i][k];
For r = 1 To k-1 Do
l[i][k] = l[i][k] – l[i][r]*u[r][k];
EndFor r
l[i][k] = l[i][k] / u[k][k]
EndFor i
EndFor k /结束分解/
Step6
For i = 1 To n Do /由 Ly=b 求出y[i]/
y[i] = b[i]
For j = 1 To i-1 Do
y[i] = y[i] – l[i][j]*y[j];
EndFor j
EndFor i
Step7
For i = n Downto 1 Do /由 Ux=y 求出 x[i]/
x[i] = y[i];
For j = i+1 To n Do
y[i] = y[i] – u[i][j]*x[j]
EndFor j
x[i] = y[i]/u[i][i]
EndFor i


void Doolittle(int n,double *A,double *b)//n为阶数 A为系数矩阵 b为常数矩阵

{

double *L = new double[n*n];//开辟L矩阵空间

double *U = new double[n*n];//开辟U矩阵空间

double *y = new double[n];//开辟y矩阵空间

for (int i = 0; i < n; i++)

{

for (int j = 0; j < n; j++)

{

*(U + i*n + j) = 0;//暂时全部赋值为0

if (i==j)

{

*(L + i*n + j) = 1;//对角线赋值为1

}

else

{

*(L + i*n + j) = 0;//其他暂时赋值为0

}

}

}

for (int k = 0; k < n; k++)//计算u和l矩阵的值

{

for (int j = k; j < n; j++)

{

*(U + k*n + j) = *(A + k*n + j);//第一行

for (int r = 0; r < k; r++)//接下来由L的前一列算u的下一行

{

*(U + k*n + j) = *(U + k*n + j) – (*(L + k*n + r)*(*(U + r*n + j)));

}

}

for (int i = k+1; i < n; i++)//计算L的列

{

*(L + i*n + k) = *(A + i*n + k);

for (int r = 0; r < k; r++)

{

*(L + i*n + k) = *(L + i*n + k) – (*(L + i*n + r)*(*(U + r*n + k)));

}

*(L + i*n + k) = *(L + i*n + k) / (*(U + k*n + k));

}

}

for (int i = 0; i < n; i++)//由Ly=b算y

{

*(y
+ i) = *(b + i);

for (int j = 0; j < i; j++)

{

*(y + i) = *(y + i) – *(L + i*n + j)*(*(y + j));

}

}

for (int i = n-1; i >= 0; i–)//由Ux=y算x

{

*(x
+ i) = *(y + i);

for (int j = i+1; j < n; j++)

{

*(y + i) = *(y + i) – *(U + i*n + j)*(*(x + j));

}

*(x
+ i) = *(y + i) / (*(U + i*n + i));

}

cout << \”解:\\n\”;//得出解

for (int i = 0; i < n; i++)

{

cout <<\”x\”<<i+1<<\”:\”<< *(x + i)
<< endl;

}

delete[]L;//释放空间

delete[]U;

delete[]y;

}


追赶法——三对角线方程组求解

注:三对角线方程组形如算法伪码:

数据说明:
定义一维数组 a[n],b[n],c[n],l[n],u[n],d[n],x[n],y[n]


Step1
输入数组a、b、c、d各元素
Step2
a[1]=0 ; l[1]=b[1];
u[1]=c[1]/l[1] ; y[1]=d[1]/l[1];
Step3
For i = 1 To n Do /* 追的过程,求 yi */
l[i] = b[i]-a[i]*u[i-1]
u[i] = c[i]/l[i]
y[i] = (d[i]-a[i]*y[i-1])/l[i]
EndFor i
Step4
x[n] = y[n] /* 赶的过程,求 xi */
For i = n-1 Downto 1 Do
x[i] = y[i]-u[i]*x[i+1]
EndFor i


void Catch_Solution(int n,double *a,double *b,double *c,double *d)//参数依次为:阶数 系数a 系数b 系数c 常数列d

{

double *l = new double[n];

double *u = new double[n];

double *x = new double[n];

double *y = new double[n];//开空间存储数据

a[0] = 0;

l[0] = b[0];

u[0] = c[0] / l[0];

y[0] = d[0] / l[0];

for (int i = 1; i < n; i++)

{

l[i] = b[i] – a[i] * u[i – 1];

u[i] = c[i] / l[i];

y[i] = (d[i] – a[i] * y[i – 1]) / l[i];

}

x[n – 1] = y[n – 1];

for (int i = n-1; i >= 0; i–)//求x

{

x[i] = y[i] – u[i] * x[i + 1];

}

for (int i = 0; i < n; i++)

{

cout << x[i] <<
endl;

}

delete[]x;

delete[]y;

delete[]l;

delete[]u;

}

LDLT分解法

注:要求系数矩阵为对称正定矩阵


算法伪码:

数据说明
a[n][n] ——存放系数矩阵A的系数;
b[n] ——存放方程组右端常数项;
x[n],y[n],z[n] ——即LTx=y,Dy=z,Lz=b;
L[n][n] ——存放L矩阵中的元素;
D[n] ——存放D矩阵中的元素;


Step1
输入系数矩阵、常数项矩阵元素a[i][j],b[i]
Step2
按下面的公式计算(k=1,…,n):
/* L对角线元素赋值为1*/
Step2-1
For i = 1 To n Do
l[i][i]=1
EndFor i
Step2-2
For k = 1 To n Do
d[k] = a[k][k]
For j=1 To k-1 Do
d[k] = d[k]-l[k][j]*l[k][j]*d[j]
EndFor j
For i = k+1 To n Do
l[i][k]=a[i][k]
For j = 1 To k-1 Do
l[i][k] = l[i][k]-l[i][j]*l[k][j]*d[j]
EndFor j
l[i][k] = l[i][k]/d[k]
EndFor i
EndFor k
Step3
For i = 1 To n Do /* 求zi */
z[i] = b[i]
For j = 1 To i-1 Do
z[i] = z[i]-l[i][j]*z[j]
EndFor j
EndFor i
Step4
For i = 1 To n Do /* 求 yi */
y[i]=z[i]/d[i]
EndFor i
Step5
For i = n Downto 1 Do /* 求 xi */
x[i] = y[i];
For j = i+1 To n Do
x[i] = x[i]-l[j][i]*x[j]
EndFor j
EndFor i


void LDL(int n, double *a, double *b)//LDL法,参数依次:阶数 系数矩阵a 常数矩阵b

{

double *U = new double[n*n];

double *y = new double[n];

double *z = new double[n];

double *L = new double[n*n];

double *D = new double[n];

for (int i = 0; i < n; i++)//用LU先算出L U

{

for (int j = 0; j < n; j++)

{

*(U + i*n + j) = 0;//暂时全部赋值为0

if (i == j)

{

*(L + i*n + j) = 1;//对角线赋值为1

}

else

{

*(L + i*n + j) = 0;//其他暂时赋值为0

}

}

}

for (int k = 0; k < n; k++)//计算u和l矩阵的值

{

for (int j = k; j < n; j++)

{

*(U + k*n + j) = *(a + k*n + j);//第一行

for (int r = 0; r < k; r++)//接下来由L的前一列算u的下一行

{

*(U + k*n + j) = *(U + k*n + j) – (*(L + k*n + r)*(*(U + r*n + j)));

}

}

for (int i = k + 1; i < n; i++)//计算L的列

{

*(L + i*n + k) = *(a + i*n + k);

for (int r = 0; r < k; r++)

{

*(L + i*n + k) = *(L + i*n + k) – (*(L + i*n + r)*(*(U + r*n + k)));

}

*(L + i*n + k) = *(L + i*n + k) / (*(U + k*n + k));

}

}

for (int i = 0; i < n; i++)//把D赋值

{

*(D
+ i) = *(U + i*n + i);

}

for (int i = 0; i < n; i++)//由Lz=b算z

{

*(z
+ i) = *(b + i);

for (int j = 0; j < i; j++)

{

*(z + i) = *(z + i) – *(L + i*n + j)*(*(z + j));

}

}

for (int i = 0; i < n; i++)//算y

{

*(y
+ i) = *(z + i) / (*(D + i));

}

double *temp = new double[n*n];

for (int i = 0; i < n; i++)//这里实现对L的转置

{

for (int j = 0; j < n; j++)

{

*(temp + i*n + j) = *(L + j*n + i);

}

}

for (int i = 0; i < n; i++)

{

for (int j = 0; j < n; j++)

{

*(L + i*n + j) = *(temp + i*n + j);

}

}

delete[]temp;//释放

for (int i = n-1; i >= 0; i–)//最后算x

{

*(x
+ i) = *(y + i);

for (int j = i+1; j <n; j++)

{

*(x + i) = *(x + i) – *(L + i*n + j)*(*(x + j));

}

}

for (int i = 0; i < n; i++)

{

cout << \”解为:\\n\”;

cout << *(x + i)
<< endl;

}

delete[]U;

delete[]y;

delete[]z;

delete[]L;

delete[]D;

}


高斯列主元法

算法伪码

数据说明:
N—所能求解方程组的最大阶数;
A[N][N]—表示系数矩阵;b[N]—表示常数项矩阵;
x[N]—表示解向量;n—方程组实际阶数;
Aug[N][N+1]—表示由A和b构成的增广矩阵;
Mtemp[N+1]—用于交换行;r—主元所在行;Pe—主元


Step1
由A[n][n]和b[n]生成增广矩阵Aug[n][n+1]
Step2For k=1 To n-1 Do
/* 开始消元 */
Step3
r=k ; Pe=fabs(Aug[k][k]) /* 寻找主元 */
Step4
For i=k+1 To n Do
If Pe<
fabs(Aug[i][k]) Then
Pe=fabs(Aug[i][k]) ; r=i
EndIf
EndFor
Step5
If r< >k Then
Swap(r , k) /交换r,k两行/
EndIf
Step6
If Aug[k][k]=0 Then /主元为0,失败/
Output(“Method Failed!”) ; Stop
EndIf
/* 将第 k 列中从 Aug[k+1][k] 开始的元素消为 0 */
Step7
For i=k+1 To n Do
m=Aug[i][k]/Aug[k][k] /* 取倍数m */
For j=k To n+1 Do
Aug[i][j]=Aug[i][j]-m*Aug[k][j]
EndFor j
EndFor i
EndFor k /* 消元完成*/
Step8
从 x[n] 开始逐步回代,求出解向量 x
x[n]=Aug[n][n+1]/Aug[n][n]
For i=n-1 Downto 1 Do
sum=0.0
For j=i+1 To n Do
sum=sum+Aug[i][j]*x[j]
EndFor j
x[i]=(Aug[i][n]-sum)/Aug[i][i]
EndFor i


void Swap(int a,int b,double *Aug,int n)//交换矩阵行 参数依次:a,b行(交换行) Aug交换的矩阵 n阶数

{

double *temp = new double[n + 1];

for (int i = 0; i <n+1; i++)

{

*(temp + i) = *(Aug + a*(n + 1) + i);

}

for (int i = 0; i <n + 1; i++)

{

*(Aug + a*(n + 1) + i) = *(Aug + b*(n + 1) + i);

}

for (int i = 0; i <n + 1; i++)

{

*(Aug + b*(n + 1) + i) = *(temp + i);

}

delete[]temp;

}

void Guss(int n,double *Aug,double *x)//高斯列主元法,n为阶数,Aug为增广矩阵(由系数矩阵和常数矩阵合并),x为解向量

{

for (int k = 0; k < n-1; k++)

{

double pe;

int r;

r =
k;

pe
= fabs(*(Aug + k*(n + 1) + k));//假定k行k列为最大主元

for (int i = k+1; i < n; i++)//寻找最大主元

{

if (pe<fabs(*(Aug + i*(n + 1) + k)))

{

pe = abs(*(Aug + i*(n + 1) + k)); r = i;

}

}

if (r!=k)//后面的行为最大主元时,交换,使主元始终在前

{

Swap(r, k,Aug,n);

}

if (pe==0)

{

cout << \”方法失败!\”; break;

}

for (int i = k+1; i < n; i++)//开始化简矩阵

{

double m;

m = *(Aug + i*(n + 1) + k) / pe;

for (int j = k; j < n+1; j++)

{

*(Aug + i*(n + 1) + j) = *(Aug + i*(n + 1) + j) – m*(*(Aug +
k*(n + 1) + j));

}

}

}

*(x +
n) = *(Aug + (n-1)*(n + 1) + n + 1) / (*(Aug + (n-1)*(n + 1) + n));//计算出最后一个未知数的值,再往回带

for (int i = n-1; i > 0; i–)//回带公式的实现

{

double sum = 0;

for (int j = i+1; j <= n; j++)

{

double m = (*(x + 1));

sum +=( *(Aug + (i – 1)*(n + 1) + j-1))*(*(x + j – 1));

}

*(x
+ i-1) = (*(Aug + (i-1)*(n + 1) + n) – sum) / (*(Aug
+ (i-1)*(n + 1) + (i-1)));

}

cout << \”增广矩阵阵为:\\n\”;

for (int i = 0; i < n; i++)

{

for (int j = 0; j < n+1; j++)

{

cout << *(Aug + i*(n + 1) + j) << \’\\t\’;

}

cout << endl;

}

cout << \”解向量为:\\n\”;

for (int i = 0; i < n; i++)

{

cout << \”x\”<<i+1<<\”:\”<<*(x + i)
<< endl;

}

}

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。ks10086520@foxmail.com